Optimal Linear Estimation Fusion—Part I: Unified Fusion Rules
نویسندگان
چکیده
This paper deals with data (or information) fusion for the purpose of estimation. Three estimation fusion architectures are considered: centralized, distributed, and hybrid. A unified linear model and a general framework for these three architectures are established. Optimal fusion rules based on the best linear unbiased estimation (BLUE), the weighted least squares (WLS), and their generalized versions are presented for cases with complete, incomplete, or no prior information. These rules are more general and flexible, and have wider applicability than previous results. For example, they are in a unified form that is optimal for all of the three fusion architectures with arbitrary correlation of local estimates or observation errors across sensors or across time. They are also in explicit forms convenient for implementation. The optimal fusion rules presented are not limited to linear data models. Illustrative numerical results are provided to verify the fusion rules and demonstrate how these fusion rules can be used in cases with complete, incomplete, or no prior information.
منابع مشابه
Unified Optimal Linear Estimation Fusion— Part II: Discussions and Examples
Several unified optimal estimation/track fusion rules in the sense of best linear unbiased estimation (BLUE) and weighted least squares (WLS) have been presented in Part I [6] for centralized, distributed, and hybrid fusion architectures. This paper discusses their pros and cons, verifies these rules, and demonstrate via simulation examples how these fusion rules can be used in cases with eithe...
متن کاملUnified Optimal Linear Estimation Fusion— Part I: Unified Models and Fusion Rules
Abstract—This paper deals with data fusion for the purpose of estimation. Three fusion architectures are considered: centralized, distributed, and hybrid. A unified linear model and general framework for these three architectures are established. Optimal fusion rules in the sense of best linear unbiased estimation (BLUE), weighted least squares (WLS), and their generalized versions are presente...
متن کاملOptimal Linear Estimation Fusion—Part V: Relationships
In this paper, we continue our study of optimal linear estimation fusion in a unified, general, and systematic setting. We clarify relationships among various BLUE and WLS fusion rules with complete, incomplete, and no prior information presented in Part I before; and we quantify the effect of prior information and data on fusion performance, including conditions under which prior information o...
متن کاملOptimal Linear Estimation Fusion—Part III: Cross-Correlation of Local Estimation Errors
The knowledge of the cross correlation of the errors of local estimates is needed in many techniques for distributed fusion. In fact, this cross covariance is a key quantity for the best linear unbiased estimation (BLUE), also known as linear minimum mean-square error (LMMSE) estimation, and optimal weighted least squares (WLS) fusion rules presented in Part I [8]. This paper presents exact, ex...
متن کاملOptimal Linear Estimation Fusion— Part VII: Dynamic Systems
In this paper, we first present a general data model for discretized asynchronous multisensor systems and show that errors in the data model are correlated across sensors and with the state. This coupling renders most existing “optimal” linear fusion rules suboptimal. While our fusion rules of Part I are valid and optimal for this general model, we propose a general, exact technique to decouple...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001